forked from 626_privacy/tensorflow_privacy
Merge pull request #2 from tensorflow/master
Logistic regression for mnist with new privacy analysis.
This commit is contained in:
commit
738a7ee8e4
1 changed files with 219 additions and 0 deletions
219
tutorials/logistic_regression_mnist.py
Normal file
219
tutorials/logistic_regression_mnist.py
Normal file
|
@ -0,0 +1,219 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""DP Logistic Regression on MNIST.
|
||||
|
||||
DP Logistic Regression on MNIST with support for privacy-by-iteration analysis.
|
||||
Feldman, Vitaly, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta.
|
||||
"Privacy amplification by iteration."
|
||||
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
|
||||
pp. 521-532. IEEE, 2018.
|
||||
https://arxiv.org/abs/1808.06651.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.optimizers import dp_optimizer
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
||||
else:
|
||||
GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training')
|
||||
flags.DEFINE_float('noise_multiplier', 0.02,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_integer('batch_size', 1, 'Batch size')
|
||||
flags.DEFINE_integer('epochs', 5, 'Number of epochs')
|
||||
flags.DEFINE_integer('microbatches', 1, 'Number of microbatches '
|
||||
'(must evenly divide batch_size)')
|
||||
flags.DEFINE_float('regularizer', 0, 'L2 regularizer coefficient')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||
flags.DEFINE_float('data_l2_norm', 8,
|
||||
'Bound on the L2 norm of normalized data.')
|
||||
|
||||
|
||||
def lr_model_fn(features, labels, mode, nclasses, dim):
|
||||
"""Model function for logistic regression."""
|
||||
input_layer = tf.reshape(features['x'], tuple([-1]) + dim)
|
||||
|
||||
logits = tf.layers.dense(inputs=input_layer,
|
||||
units=nclasses,
|
||||
kernel_regularizer=tf.contrib.layers.l2_regularizer(
|
||||
scale=FLAGS.regularizer),
|
||||
bias_regularizer=tf.contrib.layers.l2_regularizer(
|
||||
scale=FLAGS.regularizer)
|
||||
)
|
||||
|
||||
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||
labels=labels, logits=logits) + tf.losses.get_regularization_loss()
|
||||
# Define mean of loss across minibatch (for reporting through tf.Estimator).
|
||||
scalar_loss = tf.reduce_mean(vector_loss)
|
||||
|
||||
# Configure the training op (for TRAIN mode).
|
||||
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||
|
||||
if FLAGS.dpsgd:
|
||||
# Use DP version of GradientDescentOptimizer. Other optimizers are
|
||||
# available in dp_optimizer. Most optimizers inheriting from
|
||||
# tf.train.Optimizer should be wrappable in differentially private
|
||||
# counterparts by calling dp_optimizer.optimizer_from_args().
|
||||
# The loss function is L-Lipschitz with L = sqrt(2*(||x||^2 + 1)) where
|
||||
# ||x|| is the norm of the data.
|
||||
optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer(
|
||||
l2_norm_clip=math.sqrt(2*(FLAGS.data_l2_norm**2 + 1)),
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
num_microbatches=FLAGS.microbatches,
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
opt_loss = vector_loss
|
||||
else:
|
||||
optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
|
||||
opt_loss = scalar_loss
|
||||
global_step = tf.train.get_global_step()
|
||||
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
|
||||
# In the following, we pass the mean of the loss (scalar_loss) rather than
|
||||
# the vector_loss because tf.estimator requires a scalar loss. This is only
|
||||
# used for evaluation and debugging by tf.estimator. The actual loss being
|
||||
# minimized is opt_loss defined above and passed to optimizer.minimize().
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
train_op=train_op)
|
||||
|
||||
# Add evaluation metrics (for EVAL mode).
|
||||
elif mode == tf.estimator.ModeKeys.EVAL:
|
||||
eval_metric_ops = {
|
||||
'accuracy':
|
||||
tf.metrics.accuracy(
|
||||
labels=labels,
|
||||
predictions=tf.argmax(input=logits, axis=1))
|
||||
}
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
eval_metric_ops=eval_metric_ops)
|
||||
|
||||
|
||||
def normalize_data(data, data_l2_norm):
|
||||
"""Normalizes data such that each samples has bounded L2 norm.
|
||||
|
||||
Args:
|
||||
data: the dataset. Each row represents one samples.
|
||||
data_l2_norm: the target upper bound on the L2 norm.
|
||||
"""
|
||||
|
||||
for i in range(data.shape[0]):
|
||||
norm = np.linalg.norm(data[i])
|
||||
if norm > data_l2_norm:
|
||||
data[i] = data[i] / norm * data_l2_norm
|
||||
|
||||
|
||||
def load_mnist(data_l2_norm=float('inf')):
|
||||
"""Loads MNIST and preprocesses to combine training and validation data."""
|
||||
train, test = tf.keras.datasets.mnist.load_data()
|
||||
train_data, train_labels = train
|
||||
test_data, test_labels = test
|
||||
|
||||
train_data = np.array(train_data, dtype=np.float32) / 255
|
||||
test_data = np.array(test_data, dtype=np.float32) / 255
|
||||
|
||||
train_data = train_data.reshape(train_data.shape[0], -1)
|
||||
test_data = test_data.reshape(test_data.shape[0], -1)
|
||||
|
||||
idx = np.random.permutation(len(train_data)) # shuffle data once
|
||||
train_data = train_data[idx]
|
||||
train_labels = train_labels[idx]
|
||||
|
||||
normalize_data(train_data, data_l2_norm)
|
||||
normalize_data(test_data, data_l2_norm)
|
||||
|
||||
train_labels = np.array(train_labels, dtype=np.int32)
|
||||
test_labels = np.array(test_labels, dtype=np.int32)
|
||||
|
||||
return train_data, train_labels, test_data, test_labels
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
tf.logging.set_verbosity(tf.logging.INFO)
|
||||
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
|
||||
raise ValueError('Number of microbatches should divide evenly batch_size')
|
||||
if FLAGS.data_l2_norm <= 0:
|
||||
raise ValueError('FLAGS.data_l2_norm needs to be positive.')
|
||||
if FLAGS.learning_rate > 8 / FLAGS.data_l2_norm**2:
|
||||
raise ValueError('The amplification by iteration analysis requires'
|
||||
'learning_rate <= 2 / beta, where beta is the smoothness'
|
||||
'of the loss function and is upper bounded by ||x||^2 / 4'
|
||||
'with ||x|| being the largest L2 norm of the samples.')
|
||||
|
||||
# Load training and test data.
|
||||
# Smoothness = ||x||^2 / 4 where ||x|| is the largest L2 norm of the samples.
|
||||
# To get bounded smoothness, we normalize the data such that each sample has a
|
||||
# bounded L2 norm.
|
||||
train_data, train_labels, test_data, test_labels = load_mnist(
|
||||
data_l2_norm=FLAGS.data_l2_norm)
|
||||
|
||||
# Instantiate the tf.Estimator.
|
||||
# pylint: disable=g-long-lambda
|
||||
model_fn = lambda features, labels, mode: lr_model_fn(features, labels, mode,
|
||||
nclasses=10,
|
||||
dim=train_data.shape[1:]
|
||||
)
|
||||
mnist_classifier = tf.estimator.Estimator(
|
||||
model_fn=model_fn,
|
||||
model_dir=FLAGS.model_dir)
|
||||
|
||||
# Create tf.Estimator input functions for the training and test data.
|
||||
# To analyze the per-user privacy loss, we keep the same orders of samples in
|
||||
# each epoch by setting shuffle=False.
|
||||
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||
x={'x': train_data},
|
||||
y=train_labels,
|
||||
batch_size=FLAGS.batch_size,
|
||||
num_epochs=FLAGS.epochs,
|
||||
shuffle=False)
|
||||
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||
x={'x': test_data},
|
||||
y=test_labels,
|
||||
num_epochs=1,
|
||||
shuffle=False)
|
||||
|
||||
# Train the model
|
||||
steps_per_epoch = train_data.shape[0] // FLAGS.batch_size
|
||||
mnist_classifier.train(input_fn=train_input_fn,
|
||||
steps=steps_per_epoch * FLAGS.epochs)
|
||||
|
||||
# Evaluate the model and print results
|
||||
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
|
||||
test_accuracy = eval_results['accuracy']
|
||||
print('Test accuracy after %d epochs is: %.3f' % (FLAGS.epochs,
|
||||
test_accuracy))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
Loading…
Reference in a new issue