forked from 626_privacy/tensorflow_privacy
address schien comments
This commit is contained in:
parent
3bf78f46fe
commit
e468af41dd
3 changed files with 15 additions and 11 deletions
|
@ -18,12 +18,13 @@ The script applies the RDP accountant to estimate privacy budget of an iterated
|
||||||
Sampled Gaussian Mechanism. The mechanism's parameters are controlled by flags.
|
Sampled Gaussian Mechanism. The mechanism's parameters are controlled by flags.
|
||||||
|
|
||||||
Example:
|
Example:
|
||||||
compute_dp_sgd_privacy
|
compute_noise_from_budget
|
||||||
--N=60000 \
|
--N=60000 \
|
||||||
--batch_size=256 \
|
--batch_size=256 \
|
||||||
--epsilon=2.92 \
|
--epsilon=2.92 \
|
||||||
--epochs=60 \
|
--epochs=60 \
|
||||||
--delta=1e-5
|
--delta=1e-5 \
|
||||||
|
--min_noise=1e-6
|
||||||
|
|
||||||
The output states that DP-SGD with these parameters should
|
The output states that DP-SGD with these parameters should
|
||||||
use a noise multiplier of 1.12.
|
use a noise multiplier of 1.12.
|
||||||
|
@ -50,6 +51,7 @@ flags.DEFINE_integer('batch_size', None, 'Batch size')
|
||||||
flags.DEFINE_float('epsilon', None, 'Target epsilon for DP-SGD')
|
flags.DEFINE_float('epsilon', None, 'Target epsilon for DP-SGD')
|
||||||
flags.DEFINE_float('epochs', None, 'Number of epochs (may be fractional)')
|
flags.DEFINE_float('epochs', None, 'Number of epochs (may be fractional)')
|
||||||
flags.DEFINE_float('delta', 1e-6, 'Target delta')
|
flags.DEFINE_float('delta', 1e-6, 'Target delta')
|
||||||
|
flags.DEFINE_float('min_noise', 1e-5, 'Minimum noise level for search.')
|
||||||
|
|
||||||
|
|
||||||
def main(argv):
|
def main(argv):
|
||||||
|
@ -60,7 +62,7 @@ def main(argv):
|
||||||
assert FLAGS.epsilon is not None, 'Flag epsilon is missing.'
|
assert FLAGS.epsilon is not None, 'Flag epsilon is missing.'
|
||||||
assert FLAGS.epochs is not None, 'Flag epochs is missing.'
|
assert FLAGS.epochs is not None, 'Flag epochs is missing.'
|
||||||
compute_noise(FLAGS.N, FLAGS.batch_size, FLAGS.epsilon,
|
compute_noise(FLAGS.N, FLAGS.batch_size, FLAGS.epsilon,
|
||||||
FLAGS.epochs, FLAGS.delta)
|
FLAGS.epochs, FLAGS.delta, FLAGS.min_noise)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -45,7 +45,7 @@ def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
|
||||||
return eps, opt_order
|
return eps, opt_order
|
||||||
|
|
||||||
|
|
||||||
def compute_noise(n, batch_size, target_epsilon, epochs, delta):
|
def compute_noise(n, batch_size, target_epsilon, epochs, delta, noise_lbd):
|
||||||
"""Compute noise based on the given hyperparameters."""
|
"""Compute noise based on the given hyperparameters."""
|
||||||
q = batch_size / n # q - the sampling ratio.
|
q = batch_size / n # q - the sampling ratio.
|
||||||
if q > 1:
|
if q > 1:
|
||||||
|
@ -54,10 +54,11 @@ def compute_noise(n, batch_size, target_epsilon, epochs, delta):
|
||||||
list(range(5, 64)) + [128, 256, 512])
|
list(range(5, 64)) + [128, 256, 512])
|
||||||
steps = int(math.ceil(epochs * n / batch_size))
|
steps = int(math.ceil(epochs * n / batch_size))
|
||||||
|
|
||||||
init_noise = 1e-5 # minimum possible noise
|
init_noise = noise_lbd # minimum possible noise
|
||||||
init_epsilon, _ = apply_dp_sgd_analysis(q, init_noise, steps, orders, delta)
|
init_epsilon, _ = apply_dp_sgd_analysis(q, init_noise, steps, orders, delta)
|
||||||
|
|
||||||
if init_epsilon < target_epsilon: # 1e-5 was an overestimate
|
if init_epsilon < target_epsilon: # noise_lbd was an overestimate
|
||||||
|
print("min_noise too large for target epsilon.")
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
cur_epsilon = init_epsilon
|
cur_epsilon = init_epsilon
|
||||||
|
|
|
@ -26,14 +26,15 @@ from tensorflow_privacy.privacy.analysis import compute_noise_from_budget_lib
|
||||||
class ComputeNoiseFromBudgetTest(parameterized.TestCase):
|
class ComputeNoiseFromBudgetTest(parameterized.TestCase):
|
||||||
|
|
||||||
@parameterized.named_parameters(
|
@parameterized.named_parameters(
|
||||||
('Test0', 60000, 150, 0.941870567, 15, 1e-5, 1.3),
|
('Test0', 60000, 150, 0.941870567, 15, 1e-5, 1e-5, 1.3),
|
||||||
('Test1', 100000, 100, 1.70928734, 30, 1e-7, 1.0),
|
('Test1', 100000, 100, 1.70928734, 30, 1e-7, 1e-6, 1.0),
|
||||||
('Test2', 100000000, 1024, 5907984.81339406, 10, 1e-7, 0.1),
|
('Test2', 100000000, 1024, 5907984.81339406, 10, 1e-7, 1e-5, 0.1),
|
||||||
|
('Test3', 100000000, 1024, 5907984.81339406, 10, 1e-7, 1, 0),
|
||||||
)
|
)
|
||||||
def test_compute_noise(self, n, batch_size, target_epsilon, epochs,
|
def test_compute_noise(self, n, batch_size, target_epsilon, epochs,
|
||||||
delta, expected_noise):
|
delta, min_noise, expected_noise):
|
||||||
target_noise = compute_noise_from_budget_lib.compute_noise(
|
target_noise = compute_noise_from_budget_lib.compute_noise(
|
||||||
n, batch_size, target_epsilon, epochs, delta)
|
n, batch_size, target_epsilon, epochs, delta, min_noise)
|
||||||
self.assertAlmostEqual(target_noise, expected_noise)
|
self.assertAlmostEqual(target_noise, expected_noise)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
Loading…
Reference in a new issue