Compare commits
12 commits
ruby/stude
...
main
Author | SHA1 | Date | |
---|---|---|---|
1c16496e61 | |||
99ba0b3f6d | |||
70d4e4dfdc | |||
f407827ac1 | |||
5da8c44743 | |||
7b77748dcd | |||
2586c351d9 | |||
e239602148 | |||
ce3a848eb7 | |||
86d16e53d7 | |||
ebfbd88332 | |||
a697d4687c |
7 changed files with 1156 additions and 94 deletions
|
@ -7,25 +7,34 @@ import torch
|
|||
import torch.nn as nn
|
||||
from torch import optim
|
||||
from torch.optim.lr_scheduler import MultiStepLR
|
||||
from torch.utils.data import DataLoader, Subset, TensorDataset
|
||||
from torch.utils.data import DataLoader, Subset, TensorDataset, ConcatDataset
|
||||
import torch.nn.functional as F
|
||||
from pathlib import Path
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import CIFAR10
|
||||
import pytorch_lightning as pl
|
||||
import opacus
|
||||
import random
|
||||
from tqdm import tqdm
|
||||
from opacus.validators import ModuleValidator
|
||||
from opacus.utils.batch_memory_manager import BatchMemoryManager
|
||||
from concurrent.futures import ProcessPoolExecutor, as_completed
|
||||
from WideResNet import WideResNet
|
||||
from equations import get_eps_audit
|
||||
import student_model
|
||||
import fast_model
|
||||
import convnet_classifier
|
||||
import wrn
|
||||
import warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
|
||||
DEVICE = None
|
||||
DTYPE = None
|
||||
DATADIR = Path("./data")
|
||||
|
||||
|
||||
def get_dataloaders(m=1000, train_batch_size=128, test_batch_size=10):
|
||||
def get_dataloaders3(m=1000, train_batch_size=128, test_batch_size=10):
|
||||
seed = np.random.randint(0, 1e9)
|
||||
seed ^= int(time.time())
|
||||
pl.seed_everything(seed)
|
||||
|
@ -44,37 +53,129 @@ def get_dataloaders(m=1000, train_batch_size=128, test_batch_size=10):
|
|||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
||||
])
|
||||
datadir = Path("./data")
|
||||
train_ds = CIFAR10(root=datadir, train=True, download=True, transform=train_transform)
|
||||
test_ds = CIFAR10(root=datadir, train=False, download=True, transform=test_transform)
|
||||
train_ds = CIFAR10(root=DATADIR, train=True, download=True, transform=train_transform)
|
||||
test_ds = CIFAR10(root=DATADIR, train=False, download=True, transform=test_transform)
|
||||
|
||||
# Original dataset
|
||||
x = np.stack(train_ds[i][0].numpy() for i in range(len(train_ds))) # Applies transforms
|
||||
p = np.random.permutation(len(train_ds))
|
||||
x_train = np.stack(train_ds[i][0].numpy() for i in range(len(train_ds)))
|
||||
y_train = np.array(train_ds.targets).astype(np.int64)
|
||||
|
||||
# Choose m points to randomly exclude at chance
|
||||
S = np.full(len(train_ds), True)
|
||||
S[:m] = np.random.choice([True, False], size=m) # Vector of determining if each point is in or out
|
||||
x = np.stack(test_ds[i][0].numpy() for i in range(len(test_ds))) # Applies transforms
|
||||
y = np.array(test_ds.targets).astype(np.int64)
|
||||
|
||||
# Pull points from training set when m > test set
|
||||
if m > len(x):
|
||||
k = m - len(x)
|
||||
mask = np.full(len(x_train), False)
|
||||
mask[:k] = True
|
||||
|
||||
x = np.concatenate([x_train[mask], x])
|
||||
y = np.concatenate([y_train[mask], y])
|
||||
x_train = x_train[~mask]
|
||||
y_train = y_train[~mask]
|
||||
|
||||
# Store the m points which could have been included/excluded
|
||||
mask = np.full(len(train_ds), False)
|
||||
mask = np.full(len(x), False)
|
||||
mask[:m] = True
|
||||
mask = mask[p]
|
||||
mask = mask[np.random.permutation(len(x))]
|
||||
|
||||
x_m = x[mask] # These are the points being guessed at
|
||||
y_m = np.array(train_ds.targets)[mask].astype(np.int64)
|
||||
S_m = S[p][mask] # Ground truth of inclusion/exclusion for x_m
|
||||
adv_points = x[mask]
|
||||
adv_labels = y[mask]
|
||||
|
||||
# Remove excluded points from dataset
|
||||
x_in = x[S[p]]
|
||||
y_in = np.array(train_ds.targets).astype(np.int64)
|
||||
y_in = y_in[S[p]]
|
||||
# Mislabel inclusion/exclusion examples intentionally!
|
||||
for i in range(len(adv_labels)):
|
||||
while True:
|
||||
c = np.random.choice(range(10))
|
||||
if adv_labels[i] != c:
|
||||
adv_labels[i] = c
|
||||
break
|
||||
|
||||
td = TensorDataset(torch.from_numpy(x_in), torch.from_numpy(y_in).long())
|
||||
# Choose m points to randomly exclude at chance
|
||||
S = np.random.choice([True, False], size=m) # Vector of determining if each point is in or out
|
||||
|
||||
assert len(adv_points) == m
|
||||
inc_points = adv_points[S]
|
||||
inc_labels = adv_labels[S]
|
||||
|
||||
td = TensorDataset(torch.from_numpy(inc_points).float(), torch.from_numpy(inc_labels).long())
|
||||
td2 = TensorDataset(torch.from_numpy(x_train).float(), torch.from_numpy(y_train).long())
|
||||
td = ConcatDataset([td, td2])
|
||||
train_dl = DataLoader(td, batch_size=train_batch_size, shuffle=True, num_workers=4)
|
||||
pure_train_dl = DataLoader(train_ds, batch_size=train_batch_size, shuffle=True, num_workers=4)
|
||||
test_dl = DataLoader(test_ds, batch_size=test_batch_size, shuffle=True, num_workers=4)
|
||||
|
||||
return train_dl, test_dl, x_in, x_m, y_m, S_m
|
||||
return train_dl, test_dl, pure_train_dl, adv_points, adv_labels, S
|
||||
|
||||
|
||||
def get_dataloaders_raw(m=1000, train_batch_size=512, test_batch_size=10):
|
||||
def preprocess_data(data):
|
||||
data = torch.tensor(data)#.to(DTYPE)
|
||||
data = data / 255.0
|
||||
data = data.permute(0, 3, 1, 2)
|
||||
data = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))(data)
|
||||
data = nn.ReflectionPad2d(4)(data)
|
||||
data = transforms.RandomCrop(size=(32, 32))(data)
|
||||
data = transforms.RandomHorizontalFlip()(data)
|
||||
return data
|
||||
|
||||
train_ds = CIFAR10(root=DATADIR, train=True, download=True)
|
||||
test_ds = CIFAR10(root=DATADIR, train=False, download=True)
|
||||
|
||||
train_x = train_ds.data
|
||||
test_x = test_ds.data
|
||||
train_y = np.array(train_ds.targets)
|
||||
test_y = np.array(test_ds.targets)
|
||||
|
||||
if m > len(test_x):
|
||||
k = m - len(test_x)
|
||||
mask = np.full(len(train_x), False)
|
||||
mask[:k] = True
|
||||
mask = mask[np.random.permutation(len(train_x))]
|
||||
|
||||
test_x = np.concatenate([train_x[mask], test_x])
|
||||
test_y = np.concatenate([train_y[mask], test_y])
|
||||
train_y = train_y[~mask]
|
||||
train_x = train_x[~mask]
|
||||
|
||||
mask = np.full(len(test_x), False)
|
||||
mask[:m] = True
|
||||
mask = mask[np.random.permutation(len(test_x))]
|
||||
S = np.random.choice([True, False], size=m)
|
||||
|
||||
attack_x = test_x[mask][S]
|
||||
attack_y = test_y[mask][S]
|
||||
|
||||
for i in range(len(attack_y)):
|
||||
while True:
|
||||
c = np.random.choice(range(10))
|
||||
if attack_y[i] != c:
|
||||
attack_y[i] = c
|
||||
break
|
||||
|
||||
train_x = np.concatenate([train_x, attack_x])
|
||||
train_y = np.concatenate([train_y, attack_y])
|
||||
|
||||
train_x = preprocess_data(train_x)
|
||||
test_x = preprocess_data(test_x)
|
||||
attack_x = preprocess_data(attack_x)
|
||||
train_y = torch.tensor(train_y)
|
||||
test_y = torch.tensor(test_y)
|
||||
attack_y = torch.tensor(attack_y)
|
||||
|
||||
train_dl = DataLoader(
|
||||
TensorDataset(train_x, train_y.long()),
|
||||
batch_size=train_batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
num_workers=4
|
||||
)
|
||||
test_dl = DataLoader(
|
||||
TensorDataset(test_x, test_y.long()),
|
||||
batch_size=train_batch_size,
|
||||
shuffle=True,
|
||||
num_workers=4
|
||||
)
|
||||
return train_dl, test_dl, train_x, attack_x.numpy(), attack_y.numpy(), S
|
||||
|
||||
|
||||
def evaluate_on(model, dataloader):
|
||||
|
@ -90,7 +191,11 @@ def evaluate_on(model, dataloader):
|
|||
labels = labels.to(DEVICE)
|
||||
|
||||
wrn_outputs = model(images)
|
||||
outputs = wrn_outputs[0]
|
||||
if len(wrn_outputs) == 4:
|
||||
outputs = wrn_outputs[0]
|
||||
else:
|
||||
outputs = wrn_outputs
|
||||
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum().item()
|
||||
|
@ -98,7 +203,54 @@ def evaluate_on(model, dataloader):
|
|||
return correct, total
|
||||
|
||||
|
||||
def train_no_cap(model, hp, train_dl, test_dl, optimizer, criterion, scheduler):
|
||||
def train_knowledge_distillation(teacher, train_dl, epochs, device, learning_rate=0.001, T=2, soft_target_loss_weight=0.25, ce_loss_weight=0.75):
|
||||
#instantiate istudent
|
||||
student = student_model.Model(num_classes=10).to(device)
|
||||
|
||||
ce_loss = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
|
||||
student_init = copy.deepcopy(student)
|
||||
student.to(device)
|
||||
teacher.to(device)
|
||||
teacher.eval() # Teacher set to evaluation mode
|
||||
student.train() # Student to train mode
|
||||
for epoch in range(epochs):
|
||||
running_loss = 0.0
|
||||
for inputs, labels in train_dl:
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Forward pass with the teacher model - do not save gradients here as we do not change the teacher's weights
|
||||
with torch.no_grad():
|
||||
teacher_logits, _, _, _ = teacher(inputs)
|
||||
|
||||
# Forward pass with the student model
|
||||
student_logits = student(inputs)
|
||||
#Soften the student logits by applying softmax first and log() second
|
||||
soft_targets = nn.functional.softmax(teacher_logits / T, dim=-1)
|
||||
soft_prob = nn.functional.log_softmax(student_logits / T, dim=-1)
|
||||
|
||||
# Calculate the soft targets loss. Scaled by T**2 as suggested by the authors of the paper "Distilling the knowledge in a neural network"
|
||||
soft_targets_loss = torch.sum(soft_targets * (soft_targets.log() - soft_prob)) / soft_prob.size()[0] * (T**2)
|
||||
|
||||
# Calculate the true label loss
|
||||
label_loss = ce_loss(student_logits, labels)
|
||||
|
||||
# Weighted sum of the two losses
|
||||
loss = soft_target_loss_weight * soft_targets_loss + ce_loss_weight * label_loss
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item()
|
||||
if epoch % 10 == 0:
|
||||
print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss / len(train_dl)}")
|
||||
|
||||
return student_init, student
|
||||
|
||||
|
||||
def train_no_cap(model, model_init, hp, train_dl, test_dl, optimizer, criterion, scheduler, adv_points, adv_labels, S):
|
||||
best_test_set_accuracy = 0
|
||||
|
||||
for epoch in range(hp['epochs']):
|
||||
|
@ -111,7 +263,10 @@ def train_no_cap(model, hp, train_dl, test_dl, optimizer, criterion, scheduler):
|
|||
optimizer.zero_grad()
|
||||
|
||||
wrn_outputs = model(inputs)
|
||||
outputs = wrn_outputs[0]
|
||||
if len(wrn_outputs) == 4:
|
||||
outputs = wrn_outputs[0]
|
||||
else:
|
||||
outputs = wrn_outputs
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
@ -121,12 +276,304 @@ def train_no_cap(model, hp, train_dl, test_dl, optimizer, criterion, scheduler):
|
|||
if epoch % 10 == 0 or epoch == hp['epochs'] - 1:
|
||||
correct, total = evaluate_on(model, test_dl)
|
||||
epoch_accuracy = round(100 * correct / total, 2)
|
||||
print(f"Epoch {epoch+1}/{hp['epochs']}: {epoch_accuracy}%")
|
||||
scores = score_model(model_init, model, adv_points, adv_labels, S)
|
||||
audits = audit_model(hp, scores)
|
||||
print(f"Epoch {epoch+1}/{hp['epochs']}: {epoch_accuracy}% | Audit : {audits[2]}/{2*audits[1]}/{audits[3]} | p[ε < {audits[0]}] < {hp['p_value']} @ ε={hp['epsilon']}")
|
||||
|
||||
return best_test_set_accuracy
|
||||
|
||||
|
||||
def train(hp, train_dl, test_dl):
|
||||
def load(hp, model_path, train_dl):
|
||||
init_model = model_path / "init_model.pt"
|
||||
trained_model = model_path / "trained_model.pt"
|
||||
|
||||
model = WideResNet(
|
||||
d=hp["wrn_depth"],
|
||||
k=hp["wrn_width"],
|
||||
n_classes=10,
|
||||
input_features=3,
|
||||
output_features=16,
|
||||
strides=[1, 1, 2, 2],
|
||||
)
|
||||
model = ModuleValidator.fix(model)
|
||||
ModuleValidator.validate(model, strict=True)
|
||||
model_init = copy.deepcopy(model)
|
||||
|
||||
privacy_engine = opacus.PrivacyEngine()
|
||||
optimizer = optim.SGD(
|
||||
model.parameters(),
|
||||
lr=0.1,
|
||||
momentum=0.9,
|
||||
nesterov=True,
|
||||
weight_decay=5e-4
|
||||
)
|
||||
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||||
module=model,
|
||||
optimizer=optimizer,
|
||||
data_loader=train_dl,
|
||||
epochs=hp['epochs'],
|
||||
target_epsilon=hp['epsilon'],
|
||||
target_delta=hp['delta'],
|
||||
max_grad_norm=hp['norm'],
|
||||
)
|
||||
|
||||
model_init.load_state_dict(torch.load(init_model, weights_only=True))
|
||||
model.load_state_dict(torch.load(trained_model, weights_only=True))
|
||||
|
||||
model_init = model_init.to(DEVICE)
|
||||
model = model.to(DEVICE)
|
||||
|
||||
adv_points = np.load("data/adv_points.npy")
|
||||
adv_labels = np.load("data/adv_labels.npy")
|
||||
S = np.load("data/S.npy")
|
||||
|
||||
return model_init, model, adv_points, adv_labels, S
|
||||
|
||||
|
||||
def train_wrn2(hp, train_dl, test_dl, adv_points, adv_labels, S):
|
||||
model = wrn.WideResNet(16, 10, 4)
|
||||
model = model.to(DEVICE)
|
||||
ModuleValidator.validate(model, strict=True)
|
||||
model_init = copy.deepcopy(model)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.SGD(
|
||||
model.parameters(),
|
||||
lr=0.12,
|
||||
momentum=0.9,
|
||||
weight_decay=1e-4
|
||||
)
|
||||
scheduler = MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[int(i * hp['epochs']) for i in [0.3, 0.6, 0.8]],
|
||||
gamma=0.1
|
||||
)
|
||||
|
||||
print(f"Training with {hp['epochs']} epochs")
|
||||
|
||||
if hp['epsilon'] is not None:
|
||||
privacy_engine = opacus.PrivacyEngine()
|
||||
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||||
module=model,
|
||||
optimizer=optimizer,
|
||||
data_loader=train_dl,
|
||||
epochs=hp['epochs'],
|
||||
target_epsilon=hp['epsilon'],
|
||||
target_delta=hp['delta'],
|
||||
max_grad_norm=hp['norm'],
|
||||
)
|
||||
|
||||
print(f"DP epsilon = {hp['epsilon']}, delta = {hp['delta']}")
|
||||
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {hp['norm']}")
|
||||
|
||||
with BatchMemoryManager(
|
||||
data_loader=train_loader,
|
||||
max_physical_batch_size=10, # 1000 ~= 9.4GB vram
|
||||
optimizer=optimizer
|
||||
) as memory_safe_data_loader:
|
||||
best_test_set_accuracy = train_no_cap(
|
||||
model,
|
||||
model_init,
|
||||
hp,
|
||||
memory_safe_data_loader,
|
||||
test_dl,
|
||||
optimizer,
|
||||
criterion,
|
||||
scheduler,
|
||||
adv_points,
|
||||
adv_labels,
|
||||
S,
|
||||
)
|
||||
else:
|
||||
print("Training without differential privacy")
|
||||
best_test_set_accuracy = train_no_cap(
|
||||
model,
|
||||
model_init,
|
||||
hp,
|
||||
train_dl,
|
||||
test_dl,
|
||||
optimizer,
|
||||
criterion,
|
||||
scheduler,
|
||||
adv_points,
|
||||
adv_labels,
|
||||
S,
|
||||
)
|
||||
|
||||
return model_init, model
|
||||
|
||||
|
||||
def train_small(hp, train_dl, test_dl, adv_points, adv_labels, S):
|
||||
model = student_model.Model(num_classes=10).to(DEVICE)
|
||||
model = model.to(DEVICE)
|
||||
model = ModuleValidator.fix(model)
|
||||
ModuleValidator.validate(model, strict=True)
|
||||
|
||||
model_init = copy.deepcopy(model)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||||
scheduler = MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[int(i * hp['epochs']) for i in [0.3, 0.6, 0.8]],
|
||||
gamma=0.2
|
||||
)
|
||||
|
||||
print(f"Training raw (no distill) STUDENT with {hp['epochs']} epochs")
|
||||
|
||||
if hp['epsilon'] is not None:
|
||||
privacy_engine = opacus.PrivacyEngine()
|
||||
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||||
module=model,
|
||||
optimizer=optimizer,
|
||||
data_loader=train_dl,
|
||||
epochs=hp['epochs'],
|
||||
target_epsilon=hp['epsilon'],
|
||||
target_delta=hp['delta'],
|
||||
max_grad_norm=hp['norm'],
|
||||
)
|
||||
|
||||
print(f"DP epsilon = {hp['epsilon']}, delta = {hp['delta']}")
|
||||
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {hp['norm']}")
|
||||
|
||||
with BatchMemoryManager(
|
||||
data_loader=train_loader,
|
||||
max_physical_batch_size=2000, # 1000 ~= 9.4GB vram
|
||||
optimizer=optimizer
|
||||
) as memory_safe_data_loader:
|
||||
best_test_set_accuracy = train_no_cap(
|
||||
model,
|
||||
model_init,
|
||||
hp,
|
||||
memory_safe_data_loader,
|
||||
test_dl,
|
||||
optimizer,
|
||||
criterion,
|
||||
scheduler,
|
||||
adv_points,
|
||||
adv_labels,
|
||||
S,
|
||||
)
|
||||
else:
|
||||
print("Training without differential privacy")
|
||||
best_test_set_accuracy = train_no_cap(
|
||||
model,
|
||||
model_init,
|
||||
hp,
|
||||
train_dl,
|
||||
test_dl,
|
||||
optimizer,
|
||||
criterion,
|
||||
scheduler,
|
||||
adv_points,
|
||||
adv_labels,
|
||||
S,
|
||||
)
|
||||
|
||||
return model_init, model
|
||||
|
||||
|
||||
def train_fast(hp, train_dl, test_dl, train_x, adv_points, adv_labels, S):
|
||||
epochs = hp['epochs']
|
||||
momentum = 0.9
|
||||
weight_decay = 0.256
|
||||
weight_decay_bias = 0.004
|
||||
ema_update_freq = 5
|
||||
ema_rho = 0.99**ema_update_freq
|
||||
dtype = torch.float16 if DEVICE.type != "cpu" else torch.float32
|
||||
|
||||
print("=========================")
|
||||
print("Training a fast model")
|
||||
print("=========================")
|
||||
weights = fast_model.patch_whitening(train_x[:10000, :, 4:-4, 4:-4])
|
||||
model = fast_model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
|
||||
|
||||
model.to(DEVICE)
|
||||
init_model = copy.deepcopy(model)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.SGD(
|
||||
model.parameters(),
|
||||
lr=0.1,
|
||||
momentum=0.9,
|
||||
nesterov=True,
|
||||
weight_decay=5e-4
|
||||
)
|
||||
scheduler = MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[int(i * hp['epochs']) for i in [0.3, 0.6, 0.8]],
|
||||
gamma=0.2
|
||||
)
|
||||
|
||||
train_no_cap(model, model_init, hp, train_dl, test_dl, optimizer, criterion, scheduler, adv_points, adv_labels, S)
|
||||
return init_model, model
|
||||
|
||||
|
||||
def train_convnet(hp, train_dl, test_dl, adv_points, adv_labels, S):
|
||||
model = convnet_classifier.ConvNet()
|
||||
model = model.to(DEVICE)
|
||||
ModuleValidator.validate(model, strict=True)
|
||||
model_init = copy.deepcopy(model)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
||||
scheduler = MultiStepLR(optimizer, milestones=[10, 25], gamma=0.1)
|
||||
|
||||
print(f"Training with {hp['epochs']} epochs")
|
||||
|
||||
if hp['epsilon'] is not None:
|
||||
privacy_engine = opacus.PrivacyEngine(accountant='rdp')
|
||||
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||||
module=model,
|
||||
optimizer=optimizer,
|
||||
data_loader=train_dl,
|
||||
epochs=hp['epochs'],
|
||||
target_epsilon=hp['epsilon'],
|
||||
target_delta=hp['delta'],
|
||||
max_grad_norm=hp['norm'],
|
||||
)
|
||||
|
||||
print(f"DP epsilon = {hp['epsilon']}, delta = {hp['delta']}")
|
||||
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {hp['norm']}")
|
||||
|
||||
with BatchMemoryManager(
|
||||
data_loader=train_loader,
|
||||
max_physical_batch_size=2000, # 1000 ~= 9.4GB vram
|
||||
optimizer=optimizer
|
||||
) as memory_safe_data_loader:
|
||||
best_test_set_accuracy = train_no_cap(
|
||||
model,
|
||||
model_init,
|
||||
hp,
|
||||
memory_safe_data_loader,
|
||||
test_dl,
|
||||
optimizer,
|
||||
criterion,
|
||||
scheduler,
|
||||
adv_points,
|
||||
adv_labels,
|
||||
S,
|
||||
)
|
||||
else:
|
||||
print("Training without differential privacy")
|
||||
best_test_set_accuracy = train_no_cap(
|
||||
model,
|
||||
model_init,
|
||||
hp,
|
||||
train_dl,
|
||||
test_dl,
|
||||
optimizer,
|
||||
criterion,
|
||||
scheduler,
|
||||
adv_points,
|
||||
adv_labels,
|
||||
S,
|
||||
)
|
||||
|
||||
return model_init, model
|
||||
|
||||
|
||||
def train(hp, train_dl, test_dl, adv_points, adv_labels, S):
|
||||
model = WideResNet(
|
||||
d=hp["wrn_depth"],
|
||||
k=hp["wrn_width"],
|
||||
|
@ -179,56 +626,136 @@ def train(hp, train_dl, test_dl):
|
|||
) as memory_safe_data_loader:
|
||||
best_test_set_accuracy = train_no_cap(
|
||||
model,
|
||||
model_init,
|
||||
hp,
|
||||
memory_safe_data_loader,
|
||||
test_dl,
|
||||
optimizer,
|
||||
criterion,
|
||||
scheduler,
|
||||
adv_points,
|
||||
adv_labels,
|
||||
S,
|
||||
)
|
||||
else:
|
||||
print("Training without differential privacy")
|
||||
best_test_set_accuracy = train_no_cap(
|
||||
model,
|
||||
model_init,
|
||||
hp,
|
||||
train_dl,
|
||||
test_dl,
|
||||
optimizer,
|
||||
criterion,
|
||||
scheduler,
|
||||
adv_points,
|
||||
adv_labels,
|
||||
S,
|
||||
)
|
||||
|
||||
return model_init, model
|
||||
|
||||
|
||||
def get_k_audit(k, scores, hp):
|
||||
correct = np.sum(~scores[:k]) + np.sum(scores[-k:])
|
||||
|
||||
eps_lb = get_eps_audit(
|
||||
hp['target_points'],
|
||||
2*k,
|
||||
correct,
|
||||
hp['delta'],
|
||||
hp['p_value']
|
||||
)
|
||||
return eps_lb, k, correct, len(scores)
|
||||
|
||||
|
||||
def score_model(model_init, model_trained, adv_points, adv_labels, S):
|
||||
scores = list()
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
with torch.no_grad():
|
||||
model_init.eval()
|
||||
x_m = torch.from_numpy(adv_points).to(DEVICE)
|
||||
y_m = torch.from_numpy(adv_labels).long().to(DEVICE)
|
||||
|
||||
for i in range(len(x_m)):
|
||||
x_point = x_m[i].unsqueeze(0).to(DEVICE)
|
||||
y_point = y_m[i].unsqueeze(0).to(DEVICE)
|
||||
is_in = S[i]
|
||||
|
||||
wrn_outputs = model_init(x_point)
|
||||
outputs = wrn_outputs[0] if len(wrn_outputs) == 4 else wrn_outputs
|
||||
init_loss = criterion(outputs, y_point)
|
||||
|
||||
wrn_outputs = model_trained(x_point)
|
||||
outputs = wrn_outputs[0] if len(wrn_outputs) == 4 else wrn_outputs
|
||||
trained_loss = criterion(outputs, y_point)
|
||||
|
||||
scores.append(((init_loss - trained_loss).item(), is_in))
|
||||
|
||||
scores = sorted(scores, key=lambda x: x[0])
|
||||
scores = np.array([x[1] for x in scores])
|
||||
return scores
|
||||
|
||||
|
||||
def audit_model(hp, scores):
|
||||
audits = (0, 0, 0, 0)
|
||||
k_schedule = np.linspace(1, hp['target_points']//2, 40)
|
||||
k_schedule = np.floor(k_schedule).astype(int)
|
||||
|
||||
with ProcessPoolExecutor() as executor:
|
||||
futures = {
|
||||
executor.submit(get_k_audit, k, scores, hp): k for k in k_schedule
|
||||
}
|
||||
|
||||
for future in as_completed(futures):
|
||||
try:
|
||||
eps_lb, k, correct, total = future.result()
|
||||
if eps_lb > audits[0]:
|
||||
audits = (eps_lb, k, correct, total)
|
||||
except Exception as exc:
|
||||
k = futures[future]
|
||||
print(f"'k={k}' generated an exception: {exc}")
|
||||
|
||||
return audits
|
||||
|
||||
|
||||
def main():
|
||||
global DEVICE
|
||||
global DTYPE
|
||||
|
||||
parser = argparse.ArgumentParser(description='WideResNet O1 audit')
|
||||
parser.add_argument('--norm', type=float, help='dpsgd norm clip factor', required=True)
|
||||
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
|
||||
parser.add_argument('--epsilon', type=float, help='dp epsilon', required=False, default=None)
|
||||
parser.add_argument('--m', type=int, help='number of target points', required=True)
|
||||
parser.add_argument('--epochs', type=int, help='number of epochs', required=True)
|
||||
parser.add_argument('--load', type=Path, help='number of epochs', required=False)
|
||||
parser.add_argument('--studentraw', action='store_true', help='train a raw student', required=False)
|
||||
parser.add_argument('--distill', action='store_true', help='train a raw student', required=False)
|
||||
parser.add_argument('--fast', action='store_true', help='train the fast model', required=False)
|
||||
parser.add_argument('--wrn2', action='store_true', help='Train a groupnormed wrn', required=False)
|
||||
parser.add_argument('--convnet', action='store_true', help='Train a convnet', required=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
if torch.cuda.is_available() and args.cuda:
|
||||
DEVICE = torch.device(f'cuda:{args.cuda}')
|
||||
DTYPE = torch.float16
|
||||
elif torch.cuda.is_available():
|
||||
DEVICE = torch.device('cuda:0')
|
||||
DTYPE = torch.float16
|
||||
else:
|
||||
DEVICE = torch.device('cpu')
|
||||
DTYPE = torch.float32
|
||||
|
||||
hp = {
|
||||
"target_points": args.m,
|
||||
"wrn_depth": 16,
|
||||
"wrn_width": 1,
|
||||
"epsilon": args.epsilon,
|
||||
"delta": 1e-5,
|
||||
"delta": 1e-6,
|
||||
"norm": args.norm,
|
||||
"batch_size": 4096,
|
||||
"epochs": 100,
|
||||
"k+": 300,
|
||||
"k-": 300,
|
||||
"batch_size": 50 if args.convnet else 4096,
|
||||
"epochs": args.epochs,
|
||||
"p_value": 0.05,
|
||||
}
|
||||
|
||||
|
@ -243,58 +770,68 @@ def main():
|
|||
hp['norm'],
|
||||
))
|
||||
|
||||
train_dl, test_dl, x_in, x_m, y_m, S_m = get_dataloaders(hp['target_points'], hp['batch_size'])
|
||||
print(f"len train: {len(train_dl)}")
|
||||
print(f"Got vector Sm: {S_m.shape}, sum={np.sum(S_m)}")
|
||||
print(f"Got x_in: {x_in.shape}")
|
||||
print(f"Got x_m: {x_m.shape}")
|
||||
print(f"Got y_m: {y_m.shape}")
|
||||
if args.load:
|
||||
train_dl, test_dl, ____, _, __, ___ = get_dataloaders3(hp['target_points'], hp['batch_size'])
|
||||
model_init, model_trained, adv_points, adv_labels, S = load(hp, args.load, train_dl)
|
||||
test_dl = None
|
||||
elif args.fast:
|
||||
train_dl, test_dl, train_x, adv_points, adv_labels, S = get_dataloaders_raw(hp['target_points'])
|
||||
model_init, model_trained = train_fast(hp, train_dl, test_dl, train_x, adv_points, adv_labels, S)
|
||||
else:
|
||||
train_dl, test_dl, pure_train_dl, adv_points, adv_labels, S = get_dataloaders3(hp['target_points'], hp['batch_size'])
|
||||
if args.wrn2:
|
||||
print("=========================")
|
||||
print("Training wrn2 model from meta")
|
||||
print("=========================")
|
||||
model_init, model_trained = train_wrn2(hp, train_dl, test_dl, adv_points, adv_labels, S)
|
||||
elif args.convnet:
|
||||
print("=========================")
|
||||
print("Training a simple convnet")
|
||||
print("=========================")
|
||||
model_init, model_trained = train_convnet(hp, train_dl, test_dl, adv_points, adv_labels, S)
|
||||
elif args.studentraw:
|
||||
print("=========================")
|
||||
print("Training a raw student model")
|
||||
print("=========================")
|
||||
model_init, model_trained = train_small(hp, train_dl, test_dl, adv_points, adv_labels, S)
|
||||
elif args.distill:
|
||||
print("=========================")
|
||||
print("Training a distilled student model")
|
||||
print("=========================")
|
||||
teacher_init, teacher_trained = train(hp, train_dl, test_dl, adv_points, adv_labels, S)
|
||||
model_init, model_trained = train_knowledge_distillation(
|
||||
teacher=teacher_trained,
|
||||
train_dl=train_dl,
|
||||
epochs=hp['epochs'],
|
||||
device=DEVICE,
|
||||
learning_rate=0.001,
|
||||
T=2,
|
||||
soft_target_loss_weight=0.25,
|
||||
ce_loss_weight=0.75,
|
||||
)
|
||||
else:
|
||||
print("=========================")
|
||||
print("Training teacher model")
|
||||
print("=========================")
|
||||
model_init, model_trained = train(hp, train_dl, test_dl)
|
||||
|
||||
model_init, model_trained = train(hp, train_dl, test_dl)
|
||||
np.save("data/adv_points", adv_points)
|
||||
np.save("data/adv_labels", adv_labels)
|
||||
np.save("data/S", S)
|
||||
torch.save(model_init.state_dict(), "data/init_model.pt")
|
||||
torch.save(model_trained.state_dict(), "data/trained_model.pt")
|
||||
|
||||
# torch.save(model_init.state_dict(), "data/init_model.pt")
|
||||
# torch.save(model_trained.state_dict(), "data/trained_model.pt")
|
||||
# scores = score_model(model_init, model_trained, adv_points, adv_labels, S)
|
||||
# audits = audit_model(hp, scores)
|
||||
|
||||
scores = list()
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
with torch.no_grad():
|
||||
model_init.eval()
|
||||
x_m = torch.from_numpy(x_m).to(DEVICE)
|
||||
y_m = torch.from_numpy(y_m).long().to(DEVICE)
|
||||
# print(f"Audit total: {audits[2]}/{2*audits[1]}/{audits[3]}")
|
||||
# print(f"p[ε < {audits[0]}] < {hp['p_value']} for true epsilon {hp['epsilon']}")
|
||||
|
||||
for i in range(len(x_m)):
|
||||
x_point = x_m[i].unsqueeze(0)
|
||||
y_point = y_m[i].unsqueeze(0)
|
||||
is_in = S_m[i]
|
||||
|
||||
init_loss = criterion(model_init(x_point)[0], y_point)
|
||||
trained_loss = criterion(model_trained(x_point)[0], y_point)
|
||||
|
||||
scores.append(((init_loss - trained_loss).item(), is_in))
|
||||
|
||||
scores = sorted(scores, key=lambda x: x[0])
|
||||
scores = np.array([x[1] for x in scores])
|
||||
|
||||
print(scores[:10])
|
||||
|
||||
correct = np.sum(~scores[:hp['k-']]) + np.sum(scores[-hp['k+']:])
|
||||
total = len(scores)
|
||||
|
||||
eps_lb = get_eps_audit(
|
||||
hp['target_points'],
|
||||
hp['k+'] + hp['k-'],
|
||||
correct,
|
||||
hp['delta'],
|
||||
hp['p_value']
|
||||
)
|
||||
|
||||
print(f"Audit total: {correct}/{total} = {round(correct/total*100, 2)}")
|
||||
print(f"p[ε < {eps_lb}] < {hp['p_value']}")
|
||||
|
||||
correct, total = evaluate_on(model_init, train_dl)
|
||||
print(f"Init model accuracy: {correct}/{total} = {round(correct/total*100, 2)}")
|
||||
correct, total = evaluate_on(model_trained, test_dl)
|
||||
print(f"Done model accuracy: {correct}/{total} = {round(correct/total*100, 2)}")
|
||||
if test_dl is not None:
|
||||
correct, total = evaluate_on(model_init, test_dl)
|
||||
print(f"Init model accuracy: {correct}/{total} = {round(correct/total*100, 2)}")
|
||||
correct, total = evaluate_on(model_trained, test_dl)
|
||||
print(f"Done model accuracy: {correct}/{total} = {round(correct/total*100, 2)}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
51
one_run_audit/convnet_classifier.py
Normal file
51
one_run_audit/convnet_classifier.py
Normal file
|
@ -0,0 +1,51 @@
|
|||
# Name: Peng Cheng
|
||||
# UIN: 674792652
|
||||
#
|
||||
# Code adapted from:
|
||||
# https://github.com/jameschengpeng/PyTorch-CNN-on-CIFAR10
|
||||
import torch
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
transform_train = transforms.Compose([
|
||||
transforms.RandomCrop(32, padding=4),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
||||
])
|
||||
|
||||
transform_test = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
||||
])
|
||||
|
||||
class ConvNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(ConvNet, self).__init__()
|
||||
self.conv1 = nn.Conv2d(in_channels=3, out_channels=48, kernel_size=(3,3), padding=(1,1))
|
||||
self.conv2 = nn.Conv2d(in_channels=48, out_channels=96, kernel_size=(3,3), padding=(1,1))
|
||||
self.conv3 = nn.Conv2d(in_channels=96, out_channels=192, kernel_size=(3,3), padding=(1,1))
|
||||
self.conv4 = nn.Conv2d(in_channels=192, out_channels=256, kernel_size=(3,3), padding=(1,1))
|
||||
self.pool = nn.MaxPool2d(2,2)
|
||||
self.fc1 = nn.Linear(in_features=8*8*256, out_features=512)
|
||||
self.fc2 = nn.Linear(in_features=512, out_features=64)
|
||||
self.Dropout = nn.Dropout(0.25)
|
||||
self.fc3 = nn.Linear(in_features=64, out_features=10)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.conv1(x)) #32*32*48
|
||||
x = F.relu(self.conv2(x)) #32*32*96
|
||||
x = self.pool(x) #16*16*96
|
||||
x = self.Dropout(x)
|
||||
x = F.relu(self.conv3(x)) #16*16*192
|
||||
x = F.relu(self.conv4(x)) #16*16*256
|
||||
x = self.pool(x) # 8*8*256
|
||||
x = self.Dropout(x)
|
||||
x = x.view(-1, 8*8*256) # reshape x
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
x = self.Dropout(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
|
@ -49,5 +49,4 @@ def get_eps_audit(m, r, v, delta, p):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
x = 100
|
||||
print(f"For m=100 r=100 v=100 p=0.05: {get_eps_audit(x, x, x, 1e-5, 0.05)}")
|
||||
print(get_eps_audit(1000, 600, 600, 1e-5, 0.05))
|
||||
|
|
141
one_run_audit/fast_model.py
Normal file
141
one_run_audit/fast_model.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def label_smoothing_loss(inputs, targets, alpha):
|
||||
log_probs = torch.nn.functional.log_softmax(inputs, dim=1, _stacklevel=5)
|
||||
kl = -log_probs.mean(dim=1)
|
||||
xent = torch.nn.functional.nll_loss(log_probs, targets, reduction="none")
|
||||
loss = (1 - alpha) * xent + alpha * kl
|
||||
return loss
|
||||
|
||||
|
||||
class GhostBatchNorm(nn.BatchNorm2d):
|
||||
def __init__(self, num_features, num_splits, **kw):
|
||||
super().__init__(num_features, **kw)
|
||||
|
||||
running_mean = torch.zeros(num_features * num_splits)
|
||||
running_var = torch.ones(num_features * num_splits)
|
||||
|
||||
self.weight.requires_grad = False
|
||||
self.num_splits = num_splits
|
||||
self.register_buffer("running_mean", running_mean)
|
||||
self.register_buffer("running_var", running_var)
|
||||
|
||||
def train(self, mode=True):
|
||||
if (self.training is True) and (mode is False):
|
||||
# lazily collate stats when we are going to use them
|
||||
self.running_mean = torch.mean(
|
||||
self.running_mean.view(self.num_splits, self.num_features), dim=0
|
||||
).repeat(self.num_splits)
|
||||
self.running_var = torch.mean(
|
||||
self.running_var.view(self.num_splits, self.num_features), dim=0
|
||||
).repeat(self.num_splits)
|
||||
return super().train(mode)
|
||||
|
||||
def forward(self, input):
|
||||
n, c, h, w = input.shape
|
||||
if self.training or not self.track_running_stats:
|
||||
assert n % self.num_splits == 0, f"Batch size ({n}) must be divisible by num_splits ({self.num_splits}) of GhostBatchNorm"
|
||||
return F.batch_norm(
|
||||
input.view(-1, c * self.num_splits, h, w),
|
||||
self.running_mean,
|
||||
self.running_var,
|
||||
self.weight.repeat(self.num_splits),
|
||||
self.bias.repeat(self.num_splits),
|
||||
True,
|
||||
self.momentum,
|
||||
self.eps,
|
||||
).view(n, c, h, w)
|
||||
else:
|
||||
return F.batch_norm(
|
||||
input,
|
||||
self.running_mean[: self.num_features],
|
||||
self.running_var[: self.num_features],
|
||||
self.weight,
|
||||
self.bias,
|
||||
False,
|
||||
self.momentum,
|
||||
self.eps,
|
||||
)
|
||||
|
||||
|
||||
def conv_bn_relu(c_in, c_out, kernel_size=(3, 3), padding=(1, 1)):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(c_in, c_out, kernel_size=kernel_size, padding=padding, bias=False),
|
||||
GhostBatchNorm(c_out, num_splits=16),
|
||||
nn.CELU(alpha=0.3),
|
||||
)
|
||||
|
||||
|
||||
def conv_pool_norm_act(c_in, c_out):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(c_in, c_out, kernel_size=(3, 3), padding=(1, 1), bias=False),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
GhostBatchNorm(c_out, num_splits=16),
|
||||
nn.CELU(alpha=0.3),
|
||||
)
|
||||
|
||||
|
||||
def patch_whitening(data, patch_size=(3, 3)):
|
||||
# Compute weights from data such that
|
||||
# torch.std(F.conv2d(data, weights), dim=(2, 3))
|
||||
# is close to 1.
|
||||
h, w = patch_size
|
||||
c = data.size(1)
|
||||
patches = data.unfold(2, h, 1).unfold(3, w, 1)
|
||||
patches = patches.transpose(1, 3).reshape(-1, c, h, w).to(torch.float32)
|
||||
|
||||
n, c, h, w = patches.shape
|
||||
X = patches.reshape(n, c * h * w)
|
||||
X = X / (X.size(0) - 1) ** 0.5
|
||||
covariance = X.t() @ X
|
||||
|
||||
eigenvalues, eigenvectors = torch.linalg.eigh(covariance)
|
||||
|
||||
eigenvalues = eigenvalues.flip(0)
|
||||
|
||||
eigenvectors = eigenvectors.t().reshape(c * h * w, c, h, w).flip(0)
|
||||
|
||||
return eigenvectors / torch.sqrt(eigenvalues + 1e-2).view(-1, 1, 1, 1)
|
||||
|
||||
|
||||
class ResNetBagOfTricks(nn.Module):
|
||||
def __init__(self, first_layer_weights, c_in, c_out, scale_out):
|
||||
super().__init__()
|
||||
|
||||
c = first_layer_weights.size(0)
|
||||
|
||||
conv1 = nn.Conv2d(c_in, c, kernel_size=(3, 3), padding=(1, 1), bias=False)
|
||||
conv1.weight.data = first_layer_weights
|
||||
conv1.weight.requires_grad = False
|
||||
|
||||
self.conv1 = conv1
|
||||
self.conv2 = conv_bn_relu(c, 64, kernel_size=(1, 1), padding=0)
|
||||
self.conv3 = conv_pool_norm_act(64, 128)
|
||||
self.conv4 = conv_bn_relu(128, 128)
|
||||
self.conv5 = conv_bn_relu(128, 128)
|
||||
self.conv6 = conv_pool_norm_act(128, 256)
|
||||
self.conv7 = conv_pool_norm_act(256, 512)
|
||||
self.conv8 = conv_bn_relu(512, 512)
|
||||
self.conv9 = conv_bn_relu(512, 512)
|
||||
self.pool10 = nn.MaxPool2d(kernel_size=4, stride=4)
|
||||
self.linear11 = nn.Linear(512, c_out, bias=False)
|
||||
self.scale_out = scale_out
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
x = self.conv3(x)
|
||||
x = x + self.conv5(self.conv4(x))
|
||||
x = self.conv6(x)
|
||||
x = self.conv7(x)
|
||||
x = x + self.conv9(self.conv8(x))
|
||||
x = self.pool10(x)
|
||||
x = x.reshape(x.size(0), x.size(1))
|
||||
x = self.linear11(x)
|
||||
x = self.scale_out * x
|
||||
return x
|
||||
|
||||
Model = ResNetBagOfTricks
|
|
@ -1,21 +1,94 @@
|
|||
import time
|
||||
import math
|
||||
import concurrent.futures
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from tqdm import tqdm
|
||||
from equations import get_eps_audit
|
||||
|
||||
|
||||
delta = 1e-5
|
||||
p_value = 0.05
|
||||
def compute_y(x_values, p, delta, proportion_correct, key):
|
||||
return key, [get_eps_audit(x, x, math.floor(x *proportion_correct), delta, p) for x in x_values]
|
||||
|
||||
x_values = np.floor((1.5)**np.arange(30)).astype(int)
|
||||
x_values = np.concatenate([x_values[x_values < 60000], [60000]])
|
||||
y_values = [get_eps_audit(x, x, x, delta, p_value) for x in tqdm(x_values)]
|
||||
|
||||
plt.xscale('log')
|
||||
plt.plot(x_values, y_values, marker='o')
|
||||
plt.xlabel("Number of samples guessed correctly")
|
||||
plt.ylabel("ε value audited")
|
||||
plt.title("Maximum possible ε from audit")
|
||||
def get_plots():
|
||||
final_values = dict()
|
||||
mul = 1.5 #1.275 #1.5
|
||||
max = 60000 #2000 #60000
|
||||
|
||||
# 5. Save the plot as a PNG
|
||||
plt.savefig("/dev/shm/my_plot.png", dpi=300, bbox_inches='tight')
|
||||
x_values = np.floor((mul)**np.arange(30)).astype(int)
|
||||
x_values = np.concatenate([x_values[x_values < max], [max]])
|
||||
|
||||
with concurrent.futures.ProcessPoolExecutor(max_workers=16) as executor:
|
||||
start_time = time.time()
|
||||
futures = [
|
||||
executor.submit(compute_y, x_values, 0.05, 0.0, 1.0, "y11"),
|
||||
executor.submit(compute_y, x_values, 0.05, 1e-6, 1.0, "y12"),
|
||||
executor.submit(compute_y, x_values, 0.05, 1e-4, 1.0, "y13"),
|
||||
executor.submit(compute_y, x_values, 0.05, 1e-2, 1.0, "y14"),
|
||||
executor.submit(compute_y, x_values, 0.01, 0.0, 1.0, "y21"),
|
||||
executor.submit(compute_y, x_values, 0.01, 1e-6, 1.0, "y22"),
|
||||
executor.submit(compute_y, x_values, 0.01, 1e-4, 1.0, "y23"),
|
||||
executor.submit(compute_y, x_values, 0.01, 1e-2, 1.0, "y24"),
|
||||
executor.submit(compute_y, x_values, 0.05, 0.0, 0.9, "y31"),
|
||||
executor.submit(compute_y, x_values, 0.05, 1e-6, 0.9, "y32"),
|
||||
executor.submit(compute_y, x_values, 0.05, 1e-4, 0.9, "y33"),
|
||||
executor.submit(compute_y, x_values, 0.05, 1e-2, 0.9, "y34"),
|
||||
executor.submit(compute_y, x_values, 0.01, 0.0, 0.9, "y41"),
|
||||
executor.submit(compute_y, x_values, 0.01, 1e-6, 0.9, "y42"),
|
||||
executor.submit(compute_y, x_values, 0.01, 1e-4, 0.9, "y43"),
|
||||
executor.submit(compute_y, x_values, 0.01, 1e-2, 0.9, "y44"),
|
||||
]
|
||||
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
k, v = future.result()
|
||||
final_values[k] = v
|
||||
print(f"Took: {time.time()-start_time}s")
|
||||
|
||||
return final_values, x_values
|
||||
|
||||
|
||||
def plot_to(value_set, x_values, title, fig_name):
|
||||
plt.xscale('log')
|
||||
plt.plot(x_values, value_set[0], marker='o', label='δ=0')
|
||||
plt.plot(x_values, value_set[1], marker='o', label='δ=1e-6')
|
||||
plt.plot(x_values, value_set[2], marker='o', label='δ=1e-4')
|
||||
plt.plot(x_values, value_set[3], marker='o', label='δ=1e-2')
|
||||
|
||||
plt.xlabel("Number of samples attacked")
|
||||
plt.ylabel("Maximum ε lower-bound from audit")
|
||||
plt.title(title)
|
||||
plt.legend()
|
||||
plt.savefig(fig_name, dpi=300, bbox_inches='tight')
|
||||
|
||||
|
||||
def main():
|
||||
final_values, x_values = get_plots()
|
||||
|
||||
plot_to(
|
||||
[final_values[f"y1{i}"] for i in range(1,5)],
|
||||
x_values,
|
||||
"Maximum ε audit with p-value=0.05 and 100% MIA accuracy",
|
||||
"/dev/shm/plot_05_100.png"
|
||||
)
|
||||
plot_to(
|
||||
[final_values[f"y1{i}"] for i in range(1,5)],
|
||||
x_values,
|
||||
"Maximum ε audit with p-value=0.01 and 100% MIA accuracy",
|
||||
"/dev/shm/plot_01_100.png"
|
||||
)
|
||||
plot_to(
|
||||
[final_values[f"y1{i}"] for i in range(1,5)],
|
||||
x_values,
|
||||
"Maximum ε audit with p-value=0.05 and 90% MIA accuracy",
|
||||
"/dev/shm/plot_05_90.png"
|
||||
)
|
||||
plot_to(
|
||||
[final_values[f"y1{i}"] for i in range(1,5)],
|
||||
x_values,
|
||||
"Maximum ε audit with p-value=0.01 and 90% MIA accuracy"
|
||||
"/dev/shm/plot_01_90.png"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
|
29
one_run_audit/student_model.py
Normal file
29
one_run_audit/student_model.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
# Create a similar student class where we return a tuple. We do not apply pooling after flattening.
|
||||
class ModifiedLightNNCosine(nn.Module):
|
||||
def __init__(self, num_classes=10):
|
||||
super(ModifiedLightNNCosine, self).__init__()
|
||||
self.features = nn.Sequential(
|
||||
nn.Conv2d(3, 16, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
nn.Conv2d(16, 16, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
)
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Linear(1024, 256),
|
||||
nn.ReLU(),
|
||||
nn.Dropout(0.1),
|
||||
nn.Linear(256, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
flattened_conv_output = torch.flatten(x, 1)
|
||||
x = self.classifier(flattened_conv_output)
|
||||
return x
|
||||
|
||||
Model = ModifiedLightNNCosine
|
232
one_run_audit/wrn.py
Normal file
232
one_run_audit/wrn.py
Normal file
|
@ -0,0 +1,232 @@
|
|||
"""
|
||||
Adapted from:
|
||||
https://github.com/facebookresearch/tan/blob/main/src/models/wideresnet.py
|
||||
"""
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
"""
|
||||
Adapted from timm:
|
||||
https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
|
||||
"""
|
||||
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class L2Norm(nn.Module):
|
||||
def forward(self, x):
|
||||
return x / x.norm(p=2, dim=1, keepdim=True)
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
def __init__(self, in_planes, out_planes, stride, nb_groups, order):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.order = order
|
||||
self.bn1 = nn.GroupNorm(nb_groups, in_planes) if nb_groups else nn.Identity()
|
||||
self.relu1 = nn.ReLU()
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_planes, out_planes, kernel_size=3, stride=stride, padding=1
|
||||
)
|
||||
self.bn2 = nn.GroupNorm(nb_groups, out_planes) if nb_groups else nn.Identity()
|
||||
self.relu2 = nn.ReLU()
|
||||
self.conv2 = nn.Conv2d(
|
||||
out_planes, out_planes, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
self.equalInOut = in_planes == out_planes
|
||||
self.bnShortcut = (
|
||||
(not self.equalInOut)
|
||||
and nb_groups
|
||||
and nn.GroupNorm(nb_groups, in_planes)
|
||||
or (not self.equalInOut)
|
||||
and nn.Identity()
|
||||
or None
|
||||
)
|
||||
self.convShortcut = (
|
||||
(not self.equalInOut)
|
||||
and nn.Conv2d(
|
||||
in_planes, out_planes, kernel_size=1, stride=stride, padding=0
|
||||
)
|
||||
) or None
|
||||
|
||||
def forward(self, x):
|
||||
skip = x
|
||||
assert self.order in [0, 1, 2, 3]
|
||||
if self.order == 0: # DM accuracy good
|
||||
if not self.equalInOut:
|
||||
skip = self.convShortcut(self.bnShortcut(self.relu1(x)))
|
||||
out = self.conv1(self.bn1(self.relu1(x)))
|
||||
out = self.conv2(self.bn2(self.relu2(out)))
|
||||
elif self.order == 1: # classic accuracy bad
|
||||
if not self.equalInOut:
|
||||
skip = self.convShortcut(self.relu1(self.bnShortcut(x)))
|
||||
out = self.conv1(self.relu1(self.bn1(x)))
|
||||
out = self.conv2(self.relu2(self.bn2(out)))
|
||||
elif self.order == 2: # DM IN RESIDUAL, normal other
|
||||
if not self.equalInOut:
|
||||
skip = self.convShortcut(self.bnShortcut(self.relu1(x)))
|
||||
out = self.conv1(self.relu1(self.bn1(x)))
|
||||
out = self.conv2(self.relu2(self.bn2(out)))
|
||||
elif self.order == 3: # normal in residualm DM in others
|
||||
if not self.equalInOut:
|
||||
skip = self.convShortcut(self.relu1(self.bnShortcut(x)))
|
||||
out = self.conv1(self.bn1(self.relu1(x)))
|
||||
out = self.conv2(self.bn2(self.relu2(out)))
|
||||
return torch.add(skip, out)
|
||||
|
||||
|
||||
class NetworkBlock(nn.Module):
|
||||
def __init__(
|
||||
self, nb_layers, in_planes, out_planes, block, stride, nb_groups, order
|
||||
):
|
||||
super(NetworkBlock, self).__init__()
|
||||
self.layer = self._make_layer(
|
||||
block, in_planes, out_planes, nb_layers, stride, nb_groups, order
|
||||
)
|
||||
|
||||
def _make_layer(
|
||||
self, block, in_planes, out_planes, nb_layers, stride, nb_groups, order
|
||||
):
|
||||
layers = []
|
||||
for i in range(int(nb_layers)):
|
||||
layers.append(
|
||||
block(
|
||||
i == 0 and in_planes or out_planes,
|
||||
out_planes,
|
||||
i == 0 and stride or 1,
|
||||
nb_groups,
|
||||
order,
|
||||
)
|
||||
)
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
|
||||
class WideResNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
depth,
|
||||
feat_dim,
|
||||
#num_classes,
|
||||
widen_factor=1,
|
||||
nb_groups=16,
|
||||
init=0,
|
||||
order1=0,
|
||||
order2=0,
|
||||
):
|
||||
if order1 == 0:
|
||||
print("order1=0: In the blocks: like in DM, BN on top of relu")
|
||||
if order1 == 1:
|
||||
print("order1=1: In the blocks: not like in DM, relu on top of BN")
|
||||
if order1 == 2:
|
||||
print(
|
||||
"order1=2: In the blocks: BN on top of relu in residual (DM), relu on top of BN ortherplace (clqssique)"
|
||||
)
|
||||
if order1 == 3:
|
||||
print(
|
||||
"order1=3: In the blocks: relu on top of BN in residual (classic), BN on top of relu otherplace (DM)"
|
||||
)
|
||||
if order2 == 0:
|
||||
print("order2=0: outside the blocks: like in DM, BN on top of relu")
|
||||
if order2 == 1:
|
||||
print("order2=1: outside the blocks: not like in DM, relu on top of BN")
|
||||
super(WideResNet, self).__init__()
|
||||
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
|
||||
assert (depth - 4) % 6 == 0
|
||||
n = (depth - 4) / 6
|
||||
block = BasicBlock
|
||||
# 1st conv before any network block
|
||||
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1, padding=1)
|
||||
# 1st block
|
||||
self.block1 = NetworkBlock(
|
||||
n, nChannels[0], nChannels[1], block, 1, nb_groups, order1
|
||||
)
|
||||
# 2nd block
|
||||
self.block2 = NetworkBlock(
|
||||
n, nChannels[1], nChannels[2], block, 2, nb_groups, order1
|
||||
)
|
||||
# 3rd block
|
||||
self.block3 = NetworkBlock(
|
||||
n, nChannels[2], nChannels[3], block, 2, nb_groups, order1
|
||||
)
|
||||
# global average pooling and classifier
|
||||
"""
|
||||
self.bn1 = nn.GroupNorm(nb_groups, nChannels[3]) if nb_groups else nn.Identity()
|
||||
self.relu = nn.ReLU()
|
||||
self.fc = nn.Linear(nChannels[3], num_classes)
|
||||
"""
|
||||
self.nChannels = nChannels[3]
|
||||
|
||||
self.block4 = nn.Sequential(
|
||||
nn.Flatten(),
|
||||
nn.Linear(256 * 8 * 8, 4096, bias=False), # 256 * 6 * 6 if 224 * 224
|
||||
nn.GroupNorm(16, 4096),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
|
||||
# fc7
|
||||
self.block5 = nn.Sequential(
|
||||
nn.Linear(4096, 4096, bias=False),
|
||||
nn.GroupNorm(16, 4096),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
# fc8
|
||||
self.block6 =nn.Sequential(
|
||||
nn.Linear(4096, feat_dim),
|
||||
L2Norm(),
|
||||
)
|
||||
|
||||
|
||||
if init == 0: # as in Deep Mind's paper
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(m.weight)
|
||||
s = 1 / (max(fan_in, 1)) ** 0.5
|
||||
nn.init.trunc_normal_(m.weight, std=s)
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.GroupNorm):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.Linear):
|
||||
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(m.weight)
|
||||
s = 1 / (max(fan_in, 1)) ** 0.5
|
||||
nn.init.trunc_normal_(m.weight, std=s)
|
||||
#m.bias.data.zero_()
|
||||
if init == 1: # old version
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(
|
||||
m.weight, mode="fan_out", nonlinearity="relu"
|
||||
)
|
||||
elif isinstance(m, nn.GroupNorm):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.Linear):
|
||||
m.bias.data.zero_()
|
||||
self.order2 = order2
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(x)
|
||||
out = self.block1(out)
|
||||
out = self.block2(out)
|
||||
out = self.block3(out)
|
||||
out = self.block4(out)
|
||||
out = self.block5(out)
|
||||
out = self.block6(out)
|
||||
if out.ndim == 4:
|
||||
out = out.mean(dim=-1)
|
||||
if out.ndim == 3:
|
||||
out = out.mean(dim=-1)
|
||||
|
||||
#out = self.bn1(self.relu(out)) if self.order2 == 0 else self.relu(self.bn1(out))
|
||||
#out = F.avg_pool2d(out, 8)
|
||||
#out = out.view(-1, self.nChannels)
|
||||
return out#self.fc(out)
|
Loading…
Reference in a new issue